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We consider a two-dimensional steady spiral wave in a singly diffusive FitzHugh-Nagumo medium. When
perturbed by a uniform external field, the spiral will, in general, display a drifting motion as well as a spatial
deformation with Doppler-like features. The present work demonstrates the existence of a radical departure
from the conventional moving-source Doppler deformation of the wave pattern in space, even to first order in
the perturbation. In particular, the maximal shrinking of the wavelength can occur in a direction very different
from the drift itself; the anomalous direction of the shift amounts to azeroth-order effectin the perturbation.
We present a simple renormalization-based formula for this effect, as well as the results of some numerical
simulations; theory and simulations are in good agreement. The formula involves dispersion properties of the
one-dimensional unperturbed system. The basic technique is related to Zykov’s derivation of the curvature-
speed formula for a wave front. There exists a Doppler anomaly in time as well, but it is less conspicuous than
the spatial one because it is of second order in the perturbation.@S1063-651X~96!02608-6#

PACS number~s!: 82.40.Ck

I. INTRODUCTION

In this paper we study the spatial Doppler deformation of
a drifting spiral wave. More specifically, we consider a snap-
shot of the spiral, and examine the spacing between its turns
in various regions characterized by their orientation with re-
spect to the spiral’s center. We assume the medium of propa-
gation to be modeled by two-dimensional reaction-diffusion
equations of the FitzHugh-Nagumo type@1#; the drift is
caused by an extra gradient term~or convection term! in one
of the equations. The Belousov-Zhabotinsky~BZ! reaction
@2# in an external uniform time-independent electric field
provides a reasonable realization of such a model. That the
field has a strong effect on two-dimensional BZ wave pat-
terns, including spirals, is well documented experimentally
and in computer simulations@3–7#. However, a quantitative
theoretical understanding directly based on the properties of
the medium has been lacking, especially in regard to how the
deformation differs from traditional expectations. In this
work it is our aim to provide such an analysis and to test its
predictions through computer simulations.

In the conventional moving-source situation, the wave-
length is maximally reduced in the direction of drift. A spiral
wave, however, breaks the chiral symmetry of the system; as
a consequence, the drift need not be parallel~or antiparallel!
to the perturbing field. This is true as well if the field is
replaced by a gradient in some parameter of the medium@8#.
Furthermore, the direction of maximum Doppler deformation
need no longer be parallel to the drift; this is the feature we
refer to as being anomalous, and it can be observed in Refs.
@4, 7#. Finally, the maximum deformation need not be lined
up with the field. These angular differences can be large, and
they do not necessarily vanish in the limit of zero external
field. In what follows we demonstrate these statements nu-
merically and analytically as they apply to the Doppler de-
formation; in the analytic work, the drift velocity will be
assumed known.

The object of this research is to understand and predict,

quantitatively, deformations such as are displayed in the
simulations of Fig. 1. Our theoretical derivation of the effect
results in a formula, Eq.~23! further on, which predicts the
deformation on the basis of the spiral’s drift velocity and its
unperturbed period of rotation; the formula also makes use of
some ingredients, such as the dispersion, from the one-
dimensional solutions of the unperturbed FitzHugh-Nagumo
equations. To first order in the perturbing field, our predic-
tion has the form

L~n!2L~2n!5n•~pV1qG!,

where the unit vectorn points from the spiral’s instantaneous
center of rotation to the observation region, and where the
left side is the wavelength difference between that region and
the one oppositely located relative to the center. The vectors
V andG stand for drift velocity and perturbing field; the
coefficients p and q involve the above-mentioned one-
dimensional parameters. The method of derivation amounts
to a kind of renormalization, or rescaling, in which we com-
pare two solutions for plane waves. The first solution is the
perturbed spiral wave in the peripheral~spatially asymptotic!
region. The second solution is the unperturbed periodic one-
dimensional wave, calculated within a range of parameters.
No detailed knowledge of the solutions is required in order
to derive the formula. The constraint on the Doppler pattern
arises from the fact that both solutions obey equations that
are formally identical, although some parameters are differ-
ent. An appropriate rescaling of those parameters must con-
vert one solution into the other. A similar procedure was
used some time ago by Zykov@9# in order to estimate the
speed of a wave from the front’s curvature.

A topic of considerable importance is the Doppler shift in
the wave’s period rather than in its wavelength. The motiva-
tion can arise from the BZ reaction@10# but more typically
from electrocardiography@11–18#, where the spiral’s drift is
caused by nonuniformities in the medium, or possibly by
spontaneous wandering. The results of the present paper
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have a bearing on these observations if the anomaly we de-
scribe is somehow generic, in excitable media, with respect
to the detailed origin of the drift. In fact, a temporal anomaly
is visible in Ref.@12#. Nevertheless, it must be pointed out
that in the time domain the anomalous shift and the normal
one differ only in the second order of perturbation. Thus,
under most experimental conditions, the temporal anomaly
will be far less observable than the spatial one. This second-
order property is demonstrated in Appendix B. Apart from
attempting to clarify that issue, we do not pursue the discus-
sion of the temporal Doppler shift any further.

II. ASYMPTOTIC BEHAVIOR
IN THE COMOVING SYSTEM

We study drifting spiral waves in a perturbed FitzHugh-
Nagumo medium characterized, in two space dimensions
(x,y), by the following equations@1# for two propagating
variablesu,v:

] tu2a“2u1G]xu1F1~u,v !50, ~1!

] tv1hF2~u,v !50, ~2!

wherea, G, andh are constant parameters;a is the diffu-
sivity, andG parametrizes a gradient perturbation in thex
direction. The parameterh is not necessarily small, and its
role will become apparent further on;F1 andF2 are generic
reactivity functions, capable of maintaining a spiral wave. In
Eq. ~1!, the operator] t1G]x is the convective time deriva-
tive associated with a dimensionless effective ion concentra-
tion u in the BZ medium;G is proportional to the electric
field and the ion mobility. The spatial domain is considered
unbounded.

We postulate that the perturbed spiral, when observed
many wavelengths away from its core, drifts at a constant
velocity V. The core may still do some limited wandering
with respect to that uniform motion@19#. Changing from the
laboratory coordinates (x,y)5r to the drifting spiral’s co-
moving coordinates (X,Y)5R,

R5r2Vt, ~3!

we have for~1! and ~2!

] tu2~V1G!•“u2a“2u1F1~u,v !50, ~4!

] tv2V•“v1hF2~u,v !50, ~5!

where“ now operates with respect toR, and where we
defineG5(G,0). In the comoving system we postulate a
steady-state rotation, i.e., the frequency is constant in time
and independent of the~comoving! location. The core region
may or may not behave in that manner, but is unimportant
for our purpose.

We next examine a peripheral region~R→`! in which the
wave can be considered plane, so that it propagates in the
direction of a fixed unit vectorn; asymptotically,n is in
general not parallel toR except in the unperturbed case. In
such a region we have

u5u@n•R2C~n!t#, v5v@n•R2C~n!t#, ~6!

whereC~n! is the speed of propagation, in directionn, of a
plane wave in the perturbed medium. We note once more
that we are in the comoving reference frame. Equations~4!
and ~5! now read

2@C~n!1n•~V1G!#u82au91F1~u,v !50, ~7!

2@C~n!1n•V#v81hF2~u,v !50, ~8!

where the prime indicates total differentiation. It is readily
verified that Eqs.~6!–~8! are valid in the case of a weakly
deformed spiral; specifically, we must assumeu(dC/dU)/
Cu!1, whereU is the polar angle ofn. If V and (dC/dU)/C
are both of orderG for a small perturbationG, then~7! and
~8! are valid through orderG. This is the accuracy sought in
the present paper.

Equations~7! and~8! are to be compared with the plane-
wave equations for unspecified fixed speedc and propagat-
ing variablesU, V in the unperturbed medium at rest,

2cU82aU 91F1~U,V!50, ~9!

2cV81hF2~U,V!50. ~10!

FIG. 1. Drifting spirals with
anomalous Doppler deformations.
Snapshots from two simulations,
~a! and ~b!, based on a FitzHugh-
Nagumo medium perturbed by a
uniform fieldG; the spiral’s drift
velocity is V. We observe a non-
zero Doppler deformation along
the dotted line~perpendicularly to
V!, contrary to the conventional
expectation. A deformation along
V is visible as well, clearly so in
~a! and marginally in~b!. The pa-
rameters of the simulations are de-
scribed in Appendix C; panels~a!
and ~b! differ in the value of the
parameterK2. The spiral curves in
this figure are the loci of maxima
for the variableu defined by Eqs.
~1! and ~2!.
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We assume thatU andV are periodic functions with the same
period. The total derivatives in~9! and~10! are defined with
respect toX2ct, whereX is the one-dimensional space co-
ordinate.

III. PLANE-WAVE RENORMALIZATION

The system~7!, ~8! can be recast into the standard form
~9!, ~10!. Specifically, we leave~7! intact, but multiply~8! by
a constant factor:

2@C~n!1n•~V1G!#v81
C~n!1n•~V1G!

C~n!1n•V
hF2~u,v !

50. ~11!

Comparing the two systems, we see that~7!, ~11! is just a
rescaling of~9!, ~10! under

c→C~n!1n•~V1G!, ~12!

h→
C~n!1n•~V1G!

C~n!1n•V
h. ~13!

We are interested in solving for the cycle wavelengthl as
a function of direction. In the unperturbed case~9!, ~10!, it is
known @20# that under periodic boundary conditions, and as-
suming a stable solution,l in a plane wave is completely
determined byc, a, h, and the detailed form ofF1 andF2.

Let a be permanently fixed, and let the functional form of
F1 andF2 be similarly fixed. Then, in a one-dimensional
periodic wave,l may be viewed as a function ofc andh :

l5l~c,h!. ~14!

As R→`, let the drifting spiral have a cycle wavelength
L~n!. Then, according to~12! and ~13!, we have a ‘‘renor-
malization condition’’

L~n!5lSC~n!1n•~V1G!,
C~n!1n•~V1G!

C~n!1n•V
h D ,

~15!

where l is the same function as in~14!. That function is
known, in principle, if the one-dimensional problem has
been solved in a range ofc andh. We now convert~15! into
a constraint forC by eliminatingL in favor of C:

L~n!5
C~n!

F
, ~16!

whereF is the perturbed frequency, independent ofn. The
isotropy ofF is an essential ingredient in this argument; it
means thatV has been chosen correctly.

IV. FIRST-ORDER PERTURBATION FORMULAS

We examine the perturbative case

C~n!5c01c1~n!, ~17!

L~n!5l01l1~n!, ~18!

F5 f 01 f 1 , ~19!

wherec1, l1, and f 1 are first order inG, and wherec0, l0,
and f 0 apply to the peripheral region of the unperturbed spi-
ral for givenh. We also assumeV to be first order inG.

Equation~15!, expanded to first order inG and with~16!
for the left side, becomes

l0F11
c1~n!

c0
2
f 1
f 0

G5lXc01c1~n!1n•~V1G!,

S 11
n•G

c0
DhC, ~20!

or, with the zeroth order subtracted,

l0Fc1~n!

c0
2
f 1
f 0

G5@c1~n!1n•~V1G!#S ]l

]c D
h

1
n•G

c0
hS ]l

]h D
c

, ~21!

the constant variables being denoted by subscripts, and
c5c0 being understood. Solving forc1, we have

c1~n!5Fl0f 1
f 0

1n•~V1G!S ]l

]c D
h

1
n•G

c0
hS ]l

]h D
c

G YFl0

c0
2S ]l

]c D
h

G . ~22!

In the limit of zero dispersion,D[(]c/] f )h→0, both the
numerator and denominator of~22! are infinite. This is re-
lated to the fact that our renormalization argument breaks
down if D50 exactly. Indeed, zero dispersion would mean
that only one value ofc can exist, and Eq.~14! would be
meaningless. Fortunately, it is safe to assume@20# that there
always exists at least a small finite range ofc. Because of
this singularity, and for purposes of measurement as well, it
can be more convenient to take the frequency or period pa-
rameter,f or t 51/f , as independent. As an illustration we
selectt1, as well asl1, ~]l/]t!h , and~]t/]h!l rather thanc1,
~]l/]c!h and~]l/]h!c , as the ingredients of the formula. The
partial-derivative manipulations are shown in Appendix A.
The result, equivalent to~22!, is

l1~n!5
t0
l0

S ]l

]t D
h
H l0

t1
t0

2n•F ~V1G!t01GhS ]t

]h D
l

G J .
~23!

We need to comment on several features of this formula,
which is our central theoretical result. It yields the excess
wavelengthl1 in direction n in terms of the periodt0 and
asymptotic wavelengthl0 of the unperturbed spiral. The
dispersion-like quantities~]l/]t!h and~]t/]h!l are measured
from the unperturbed plane waves with periodt0 ~and there-
fore wavelengthl0!; the parameterh must be assigned the
same value for the perturbed spiral, the unperturbed spiral,
and the unperturbed plane wave. We can in fact set, without
loss of generality,h51 in Eq. ~2!, and here, after the partial
derivative has been performed. The perturbing vectorG is
given, and the drift velocityV must be measured from the
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perturbed spiral. The scalar contributiont1 ~the change in
period due to the presence ofG! is not predicted by our
calculations. However, in a snapshot of the drifting spiral,t1
is irrelevant to a measurement ofl1~n!2l1~2n!, which
gives the Doppler geometry. The interpretation of~23! is
facilitated by the fact thatn andR can be considered paral-
lel; any correction must contribute to~23! in higher than
first-order perturbation. In practice we may sometimes want
to rewrite the last term of~23! by using the identity
~]l/]t!h~]t/]h!l52~]l/]h!t .

The term inV still represents~essentially! the conven-
tional Doppler shift for a moving source. In the anomalous
situation which concerns us here, and in the zero-dispersion
limit D→0, the overall factor in ~23! becomes
~t0/l0!~]l/]t!h51. If we now measure the Doppler shift at
right angles toG, Eq. ~23! becomes

l1~n!5l0Ft1t0
2n•

V

c0
G , ~D50, n•G50!, ~24!

yielding the conventional pattern forl1~n!2l1~2n!. As far
as the terms inG are concerned, they are kinematically
equivalent to an additional deformation caused by a ‘‘wind’’
of velocity t01h ~]t/]h!l in the2G direction.

V. NUMERICAL TESTS

In order to test formula~23! we turn to simulations~a!
and ~b!, used to produce Fig. 1. These simulations are de-
scribed in Appendix C. From the snapshots we measured[
1
2@L~n!2L~2n!# with n in the1X or 1Y directions. On the
other hand, noting thatG5~0.16, 0! andh51 in both simu-
lations, we predict from~23!

dX52
t0
l0

S ]l

]t D
h

F ~VX10.16!t01~0.16!S ]t

]h D
l

G ,
~25!

dY52
t0
l0

S ]l

]t D
h

VYt0 . ~26!

The values ofl0 andt0 were measured from the unperturbed
spiral: ~l0,t0!5~324, 36.4! for simulation ~a!, and
~l0,t0!5~25.6, 23.2! for ~b!. The partial derivatives were ob-
tained from one-dimensional simulations, in whichh and t
were varied;l0 can alternatively be obtained from these
simulations on the basis of the knownt0. In this way we find
for the overall coefficient~t0/l0!~]l/]t!h in both cases~a!
and~b!, the value 1.00 within 5%, indicating low dispersion.
From the drifting spirals we findV5~0.0374, 0.130! ~a! and
V5~20.0271, 0.0651! ~b!. These values were measured by
following the core for five rotation cycles in~a! and 12 in
~b!; V was thereby verified to be constant. From Eqs.~25!
and~26! we then predict for (dX ,dY) the values~27.7,24.8!
~a! and ~23.2,21.5! ~b!. As measured directly from the
snapshots, which permit about 10% precision, these data are
~28.0,24.8! ~a! and ~23.2,21.4! ~b!. We conclude that the
first-order theory agrees with the numerical simulation
within the latter’s accuracy.
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APPENDIX A: CHANGING VARIABLES
IN THE FIRST-ORDER FORMULA

To pass from~22! to ~23! we use~16!–~19! on the left
side; in the denominator on the right side we use

S ]l

]c D
h

5S ]

]c
~ct! D

h

5t01c0S ]t

]cD
h

. ~A1!

Equation~22! becomes

c0
l0

l15Fc0t0
1S ]c

]t D
h

Gt12
n•~V1G!

c0 S ]l

]t D
h

2
n•G

c0
2 hS ]l

]h D
c

S ]c

]t D
h

. ~A2!

The term int1 can be simplified by

S ]c

]t D
h

5F ]

]t S l

t D G
h

5
1

t0
S ]l

]t D
h

2
l0

t0
2 , ~A3!

giving

Fc0t0
1S ]c

]t D
h

Gt15S ]l

]t D
h

t1
t0
. ~A4!

Next we rewrite the last term of~A2!. Considering
l5l~c,h!, we have

S ]l

]h D
t

5S ]l

]c D
h
S ]c

]h D
t

1S ]l

]h D
c

~A5!

or, multiplying by ~]c/]t!h and rearranging terms,

S ]l

]h D
c

S ]c

]t D
h

5S ]l

]h D
t

S ]c

]t D
h

2S ]l

]t D
h

S ]c

]h D
t

5S ]l

]h D
t

F 1t0 S ]l

]t D
h

2
l0

t0
2G

2S ]l

]t D
h

F 1t0 S ]l

]h D
t

G52
l0

t0
2 S ]l

]h D
t

.

~A6!

Substituting~A4! and ~A6! in ~A2! yields ~23!.
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APPENDIX B: THE FREQUENCY ANOMALY
IS A SECOND-ORDER EFFECT

Let C~n! be the speed of wave propagation, having direc-
tion n ~at right angles to the front! in a certain asymptotic
region. In that vicinity a genericrigidly propagating wavec
has the form

c5cS n•R2C~n!t

L~n! D , ~B1!

whereL~n! is the cycle wavelength in directionn, and where
c has a unit dimensionless period:

c~z11!5c~z!. ~B2!

Equation~B1! gives the frequency, isotropic in the comoving
system:

F5C~n!/L~n!. ~B3!

In the conventional case, we haveF5 f 0 ~the intrinsic fre-
quency is unaffected by the motion!. In the laboratory sys-
tem r5R1Vt we have for the general case

c5cS n•r

L~n!
2
C~n!1n•V

L~n!
t D , ~B4!

yielding a Doppler-shifted frequency

FD~n!5
C~n!1n•V

L~n!
5F1

n•V

L~n!
. ~B5!

This is the exact formula in terms of any existing pattern in
space.

Both in the conventional and anomalous cases we have

L~n!5l01o~V!, ~B6!

and therefore to first order inV, Eq. ~B5! reads

FD~n!5F1
n•V

l0
5 f 0S Ff 0 1n•

V

c0
D . ~B7!

We conclude that to first order the angular pattern, measured
by FD~n!2FD~2n!, is identical in the conventional and
anomalous cases. It is useful to keep in mind that in the
above, we have

n5R/R1o~V!. ~B8!

APPENDIX C: DETAILS OF THE SIMULATIONS

The reactivity functions and parameters used in the nu-
merical simulations are as follows. Referring to Eqs.~1! and
~2!, we takea51; the functionsF1, F2 are

F1~u,v !52f~u!1v, ~C1!

F2~u,v !5~2u1v !/s~u!. ~C2!

The parameterh in ~2! was varied in the range~0.5, 2.75! in
the unperturbed plane-wave calculations, but was set equal to
1 in simulations~a! and ~b!. The functionf is piecewise
linear according to

f~u!5H 2K1u for u,u1 ,

K2~u2a! for u1<u<u2 ,

2K3~u21! for u.u2 .

~C3!

The functions is piecewise constant according to

s~u!5H s1 for u,B1 ,
s2 for B1<u<B2 ,
s3 for u.B2 .

~C4!

The parameter values for the functions defined above, as
used in this paper, are as follows:K154.0, K250.81 and
0.95 for simulations~a! and ~b!, respectively,K3515.0,
u150.018,s150.5, s2516.5, s353.5, B150.01, B250.95.
The parametersu2 anda are determined by demanding con-
tinuity of the function f(u): u25[(K11K2)u11K3]/
(K31K2), a5u1(K11K2)/K2 . Similar parameters have
been used elsewhere~e.g., Ref.@21#!. For the coefficient of
the linear gradient in Eq.~1! we useG50.16.

Equations~1! and~2! are integrated numerically using an
explicit Euler integration scheme, which has been found
stable for a range of parameter values. In the work reported
here, we use time and space steps ofht50.05 andhx50.8.
The calculations were carried out on a SPARC 10 worksta-
tion.
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@10# V. Pérez-Muñuzuri, R. Aliev, B. Vasiev, V. Pe´rez-Villar, and

V. I. Krinsky, Nature353, 740 ~1991!.
@11# J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter, and

1124 54M. WELLNER, A. M. PERTSOV, AND J. JALIFE



J. Jalife, Nature355, 349 ~1992!.
@12# V. G. Fast and A. M. Pertsov, J. Cardiovas. Electrophysiol.3,

255 ~1992!.
@13# J. Jalife and J. M. Davidenko, inCardiac Mapping, edited by

N. Shenasaet al. ~Futura, Mount Kisco, NY, 1993!, Chap. 38,
pp. 607–623.

@14# A. M. Pertsov, J. M. Davidenko, R. Salomonsz, W. T. Baxter,
and J. Jalife, Circ. Res.72, 631 ~1993!.

@15# J. M. Davidenko, J. Cardiovas. Electrophysiol.4, 730 ~1993!.

@16# R. A. Gray, J. Jalife, A. V. Panfilov, W. T. Baxter, C. Cabo, J.
M. Davidenko, and A. M. Pertsov, Science270, 1222~1995!.

@17# A. T. Winfree, Science270, 1224~1995!.
@18# R. A. Gray, J. Jalife, W. T. Baxter, C. Cabo, J. M. Davidenko,

and A. M. Pertsov~unpublished!.
@19# E. Lugosi, Physica D40, 331 ~1989!.
@20# J. Rinzel and J. B. Keller, Biophys. J.13, 1313~1973!.
@21# A. M. Pertsov, J. M. Davidenko, R. Salomonsz, W. T. Baxter,

and J. Jalife, Circ. Res.72, 631 ~1993!.

54 1125SPATIAL DOPPLER ANOMALY IN AN EXCITABLE MEDIUM


